Publications

Publications of NOTICE - COST action TD 1407

Click on the image for downloading the manuscript

Click on the image for downloading a high-resolution posters

 

Publications 

 

Less-studied TCEs (Nb, Ta, Ga, In, Ge, Te) 

 

Biver, M. and Filella, M. (2018). Voltammetric determination of high field strength elements (Ti, Zr, Hf, Nb, Ta) in geological matrices. Geostandards and Geoanalytical Research (in press). https://doi.org/10.1111/ggr.12214

 

Biver, M and Filella, M. (2018). Germanium and solid sample digestion with aqua regia: the nescience of chemistry basics and its sequels. Monatshefte für Chemie - Chemical Monthly 149:461–465. https://doi.org/10.1007/s00706-017-2131-5

 

Biver, M. and Filella, M. (2016). Bulk dissolution rates of cadmium and bismuth tellurides as a function of pH, temperature and dissolved oxygen. Environmental Science and Technology 50: 4675-4681. http://dx.doi.org/10.1021/acs.est.5b05920

 

Biver, M., Quentel, F.  and Filella, M. (2015). Direct determination of tellurium and its redox speciation at the low nanogram level in natural waters by cathodic stripping voltammetry. Talanta 144: 1007-1013. http://dx.doi.org/10.1016/j.talanta.2015.07.010

 

Filella, M. (2017). Tantalum in the environment. Earth-Science Reviews 173: 122-140. https://doi.org/10.1016/j.earscirev.2017.07.002

 

Filella, M., Rodríguez-Murillo J.C (2017). Less-studied TCE: are their environmental concentrations increasing due to their use in new technologies?. Chemosphere 182 (2017) 605-616. http://dx.doi.org/10.1016/j.chemosphere.2017.05.024

 

Filella, M. and Rodushkin, I. (2018). A concise guide for the determination of less-studied technology-critical elements (Nb, Ta, Ga, In, Ge, Te) by inductively coupled plasma mass spectrometry in environmental samples . Spectrochimica Acta Part B 141: 80-84.  https://doi.org/10.1016/j.sab.2018.01.004

 

Filella, M. Magnenat, D.J. and Bensimon, M. (2014). Direct determination of niobium at the low nanogram level in mineral waters and freshwaters. Analytical Methods 6: 8090-8093. http://dx.doi.org/10.1039/C4AY01860E

 

 

Thallium

 

Biadun, E., Sadowska, M., Ospina-Alvarez, N. and Krasnodebska-Ostrega, B. (2016). Direct speciation analysis of Tl based on solid phase extraction - Tl(III) retention on alumina coated with sodium dodecyl sulfate. Microchimica Acta 183 (1): 177-183. 

http://dx.doi.org/10.1007/s00604-015-1624-3

 

Loïc, M., Wissocq, A., Benedetti, M.F. and Latrille, C. (2018). Thallium (Tl) sorption onto illite and smectite: Implications for Tl mobility in the environment. Geochimica et Cosmochimica Acta 230: 1-16. http://dx.doi.org/10.1016/j.gca.2018.03.016

 

Ospina-Alvarez, N., Burakiewicz, P., Sadowska, M. and Krasnodębska-Ostręga, B. (2015). Tl(I) and Tl(III) presence in Suspended Particulate Matter: Speciation analysis of thallium in wastewater. Environmental Chemistry 12 (3): 374:379. 

http://dx.doi.org/10.1071/EN14181

 

Ospina-Alvarez, N., Głaz, L., Dmowski, K. and Krasnodębska-Ostręga, B. (2014). Mobility of toxic elements in carbonate sediments from a mining area in Poland. Environmental Chemistry Letters 12: 435-441. http://dx.doi.org/10.1007/s10311-014-0468-0

 

Voegelin, A., Pfenninger, N., Petrikis, J.,  Majzlan, J., Plötze, M., Senn, A.C., Mangold, S., Steininger, R., Göttlicher, J. (2015). Thallium speciation and extractability in a thallium and arsenic rich soil developed from mineralized carbonate rock. Environmental Science and Technology 49: 5390- 5398. http://dx.doi.org/10.1021/acs.est.5b00629

 

PGEs (Ir, Os, Pd, Pt, Rh and Ru)

 

Abdou, M., Schäfer, J., Cobelo-García A., Neira P., Petit J.C.J., Auger D., Chiffoleau J.-F., Blanc, G. (2016). Past and present platinum contamination of a major European fluvial-estuarine system: insights from river sediments and estuarine oysters. Marine Chemistry 185: 104-110. http://dx.doi.org/10.1016/j.marchem.2016.01.006

 

Abdou M., Schäfer J., Hu R., Gil-Díaz T., Garnier C., Brach-Papa C., Chiffoleau J.-F., Charmasson S., Giner F., Dutruch L., Blanc G. (2019). Platinum in sediments and mussels from the northwestern Mediterranean coast: temporal and spatial aspects. Chemosphere 215: 783-792. http://dx.doi.org/10.1016/j.chemosphere.2018.10.011

 

Almécija, C., Cobelo-García, A., Santos-Echeandía, J. (2016). Improvement of the ultra-trace voltammetric determination of Rh in environmental samples using signal transformation. Talanta 146: 737-743. http://dx.doi.org/10.1016/j.talanta.2015.06.032

 

Almécija, C., Sharma, M., Cobelo-García, A., Santos-Echeandía, J., Caetano, M. (2015). Osmium and platinum decoupling in the environment: Evidences in intertidal sediments (Tagus Estuary, SW Europe). Environmental Science and Technology 49 (11): 6545-6553. 

http://dx.doi.org/10.1021/acs.est.5b00591

 

Cobelo-García, A., López-Sánchez, D.E., Schäfer, J., Petit, J.C.J., Blanc, G., Turner, A. (2014). Behavior and fluxes of Pt in the macrotidal Gironde Estuary (SW France). Marine Chemistry 167: 93-101. http://dx.doi.org/10.1016/j.marchem.2014.07.006

 

Cobelo-García, A., Santos-Echeandía, J., López-Sánchez, D.E., Almécija, C., Omanović, D. (2014). Improving the voltammetric quantification of Ill-defined peaks using second derivative signal transformation: Example of the determination of platinum in water and sediments. Analytical Chemistry 86 (5): 2308-2313. http://dx.doi.org/10.1021/ac403558y

 

Eckhardt JD., Schäfer J., Puchelt H., Stüben D. (2000). Environmental PGE contamination in Southwest Germany. In: Zereini F., Alt F. (eds) Anthropogenic Platinum-Group Element Emissions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59678-0_5

 

Eckhardt JD., Schäfer J. (1999). Pflanzenverfügbarkeit, Boden — Pflanze Transfer. In: Zereini F., Alt F. (eds) Emissionen von Platinmetallen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58611-8_20

 

Haus, N., Zimmermann, S., Sures, B. (2010). Precious metals in urban aquatic systems: Platinum, Palladium and Rhodium: sources, occurrence, bioavailability and Eefects, in: Fatta-Kassinos, D., Bester, K., Kümmerer, K. (Eds), Xenobiotics in the urban water cycle, mass flows, environmental processes, mitigation and treatment strategies. Environmental Pollution Part I. 16: 73-86. 

http://dx.doi.org/10.1007/978-90-481-3509-7_4

 

Le, T.T.Y., Zimmermann, S., Sures, B. (2016). How does the metallothionein induction in bivalves meet the criteria for biomarkers of metal exposure? Environmental Pollution 212, 257–268. https://doi.org/10.1016/j.envpol.2016.01.070

 

Neira, P., Cobelo-García, A., Besada, V., Santos-Echeandía, J., Bellas, J. (2015). Evidence of increased anthropogenic emissions of platinum: Time-series analysis of mussels (1991-2011) of an urban beach. Science of the Total Environment 514: 366-370. 

http://dx.doi.org/10.1016/j.scitotenv.2015.02.016

 

Osterauer, R., Marschner, L., Betz, O., Gerberding, M., Sawasdee, B., Cloetens, P., Sures, B., Triebskorn, R., Köhler, H.R. (2010). Turning snails into slugs: induced body plan changes and formation of an internal shell. Evolution & Development 12: 474-483. http://dx.doi.org/10.1111/j.1525-142X.2010.00433.x

 

Rauch, S., Peucker-Ehrenbrink, B. (2015). Sources of platinum group elements in the environment, in: Zereini, F. and Wisemann, C. (Eds). Platinum metals in the environment. Springer Berlin Heidelberg, pp. 3-17. http://dx.doi.org/10.1007/978-3-662-44559-4_1

 

Rauch, S. and Fatoki, O.S. (2013). Anthropogenic platinum enrichment in the vicinity of mines in the Bushveld Igneous Complex, South Africa. Water Air Soil Pollution: 224: 1395. http://dx.doi.org/10.1007/s11270-012-1395-y

 

Rauch, S., Peucker-Ehrenbrink, B., Kylander, M., Cortizas-Martinez, A., Weiss, D., Heslop, D., Olid, C., Mighall, T., Hemond, H.F. (2010). Anthropogenic forcings on the surficial osmium cycle. Environmental Science and Technology 44: 881-887.

 http://dx.doi.org/10.1021/es901887f

 

Ruchter, N., Zimmermann, S., Sures, B. (2015). Field Studies on PGE in Aquatic Ecosystems, in: Zereini, F. and Wisemann, C. (Eds). Platinum metals in the environment. Springer Berlin Heidelberg, pp. 351–360. http://dx.doi.org/10.1007/978-3-662-44559-4_22

 

Schäfer J., Eckhardt J.D., Berner Z., Stüben D. (1999). Time-dependent development of traffic-emitted Platinum Group Metals (PGM) in different environmental compartments. Environmental Science & Technology 33:3166-3170. http://dx.doi.org/10.1021/es990033i

 

Schäfer J., Puchelt H. (1998). Platinum Group Metals (PGM) emitted from automobile catalytic converters and their distribution in roadside soils. Journal of Geochemical Exploration 64:307-314. http://dx.doi.org/10.1016/S0375-6742(98)00040-5

 

Schäfer J., Hannker D., Eckhardt J.D., Stüben D. (1998). Uptake of traffic-related heavy metals and Platinum Group Elements (PGE) by plants. Science of the Total Environment 215:59-67.http://dx.doi.org/10.1016/S0048-9697(98)00115-6

 

Schertzinger, G., Zimmermann, S., Grabner, D., Sures, B. (2017). Assessment of sublethal endpoints after chronic exposure of the nematode Caenorhabditis elegans to palladium, platinum and rhodium. Environmental Pollution 230, 31–39. https://doi.org/10.1016/j.envpol.2017.06.040

 

Sures, B., Ruchter, N., Zimmermann, S. (2015). Biological effects of PGE on aquatic organisms, in: Zereini, F. and Wisemann, C. (Eds). Platinum metals in the environment. Springer Berlin Heidelberg, pp. 383–399. http://dx.doi.org/10.1007/978-3-662-44559-4_24

 

Zimmermann, S., Sures, B. (2018). Lessons learned from studies with the freshwater mussel Dreissena polymorpha exposed to platinum, palladium and rhodium. Science of the Total Environment 615: 1396–1405. https://doi.org/10.1016/j.scitotenv.2017.09.204

 

Zimmermann, S., Sures, B., Ruchter, N. (2015). Laboratory studies on the uptake and bioaccumulation of PGE by aquatic plants and animals, in: Zereini, F. and Wisemann, C. (Eds). Platinum metals in the environment. Springer Berlin Heidelberg, pp. 361–381. 

http://dx.doi.org/10.1007/978-3-662-44559-4_23

 

Zimmermann, S., Wolff, C., Sures, B. (2017). Toxicity of platinum, palladium and rhodium to Daphnia magna in single and binary metal exposure experiments. Environmental Pollution 224:368-376. https://doi.org/10.1016/j.envpol.2017.02.016

 

 

REEs (Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Y, Yb)

 

Blinovaa, I, Lukjanovaa, A., Muna, M., Vijaa, H., Kahrua, A. (2018). Evaluation of the potential hazard of lanthanides to freshwater microcrustaceans. Science of The Total Environment 642: 1100-1107https://doi.org/10.1016/j.scitotenv.2018.06.155

 

Caetano, M, Prego, R., Vale, C., Pablo H., Marmolejo-Rodríguez, J. (2009). Record of diagenesis of rare earth elements and other metals in a transitional sedimentary environment. Marine Chemistry 116:36-46. http://dx.doi.org/10.1016/j.marchem.2009.09.003

 

Caetano, M., Vale, C., Anes, B., Raimundo, J., Drago, T., Nogueira, M., Oliveira, A., Schimdt, S., Prego, R. (2013). The Condor Seamount at Mid Atlantic Ridge as a supplementary source of trace and rare earth elements to the sediments. Deep Sea Research II 98: 24-37. 

http://dx.doi.org/10.1016/j.dsr2.2013.01.009

 

Kumrić, K.R., Vladisavljević, G.T., Trti -Petrović, T.M. (2012). Membrane-assisted liquid phase extraction of Lu(III) in U shaped contactor with a single hollow fibre membrane. Industrial & Engineering Chemistry Research 51: 14199-14208. http://dx.doi.org/10.1021/ie301887h

 

Menahem, A., Dror, I. and Berkowitz, B. (2016). Transport of gadolinium- and arsenic-based pharmaceuticals in saturated soil under various redox conditions. Chemosphere 144, 713-720. http://dx.doi.org/10.1016/j.chemosphere.2015.09.044

 

Mittermüller M., Saatz J., Daus B. (2016). A sequential extraction procedure to evaluate the mobilisation behaviour of rare earth elements in soils and tailings materials. Chemosphere 147, 155-162. http://dx.doi.org/10.1016/j.chemosphere.2015.12.101

 

Petrović, D.Z., Trtić-Petrović, T.M., Vladisavljević, G.T., Stoiljković, M.M., Slavković-Beškoski, L.J., Kumrić, K.R. (2015). Novel 90Sr– 90Y generator system based on a pertraction through supported liquid membrane inhollow fiber contactor. Chemical Engineering Research and Design 97: 57–67. http://dx.doi.org/10.1016/j.cherd.2015.03.015

 

Prego, R., Caetano, M., Bernárdez, P., Brito, P., Ospina-Alvarez, N., Vale, C. (2012). Rare earth elements in coastal sediments of the northern Galician shelf: influence of geological features. Continental Shelf Research 35:75-85. http://dx.doi.org/10.1016/j.csr.2011.12.010

 

Prego, R., Caetano, M., Vale, C., Marmolejo-Rodríguez, J. (2009). Rare earth elements in sediments of the Vigo Ria (NW Iberian Peninsula). Continental Shelf Research 29: 896-902. http://dx.doi.org/10.1016/j.csr.2009.01.009

 

Romero-Freire A., Joonas E., Muna M., Cossu-Leguille C., Vignati D.A.L., Giamberini L.(2019). Assessment of the toxic effects of mixtures of three lanthanides (Ce, Gd, Lu) to aquatic biota. Science of The Total Environment 661: 276–284. https://doi.org/10.1016/j.scitotenv.2019.01.155

 

Saatz J., Stryhanyuk H., Vetterlein D., Musat N., Otto M., Reemtsma T., Richnow H.H., Daus B. (2016). Location and speciation of gadolinium and yttrium in roots of Zea mays by LA-ICP-MS and ToF-SIMS. Environmental Pollution 216:245–252. http://dx.doi.org/10.1016/j.envpol.2016.05.069

 

Saatz J., Vetterlein D., Mattusch J., Otto M., Daus B. (2015). The influence of gadolinium and yttrium on biomass production and nutrient balance of maize plants. Environmental Pollution 204: 32-38. http://dx.doi.org/10.1016/j.envpol.2015.03.052

 

Trtić-Petrović, T.M., Kumrić, K.R., Đorđević, J.S., Vladisavljević, G.T. (2010). Extraction of lutetium(III) from aqueous solutions by employing a single fibre-supported liquid membrane. Journal of Separation Science 3: 2002-2009. 

http://dx.doi.org/10.1002/jssc.201000042

 

 

Other publications related to the action

 

Cobelo-Garcia, A., Schäfer, J., Dror, I. (2018). VSI: Environmental concentrations, cycling and modeling of technology critical elements . Science of The Total Environment 630: 32. https://doi.org/10.1016/j.scitotenv.2018.02.160

 

Filella, M. and Cobelo-Garcia, A. (2017). Electroanalytical techniques for the quantification of technology-critical elements in environmental samples . Current Opinion in Electrochemistry 3:78–90  http://dx.doi.org/10.1016/j.coelec.2017.06.014

 

Filella, M., Dror, I., Rauch, S. (2018). Risk assessment of tech metals is ongoing. Nature 558: 372. 

http://dx.doi.org/10.1038/d41586-018-05455-9

 

Monteiro, C.E., Cobelo-Garcia, A., Caetano, M., Correia dos Santos, M.M. (2017). Improved voltammetric method for simultaneous determination of Pt and Rh using second derivative signal transformation-application to environmental samples. Talanta 175: 1-8. 

https://doi.org/10.1016/j.talanta.2017.06.067

 

Stepka, Z., Dror, I., Berkowitz, B. (2018).The effect of nanoparticles and humic acid on technology critical element concentrations in aqueous solutions with soil and sand. Science of The Total Environment 610-611: 1083-1091.

https://doi.org/10.1016/j.scitotenv.2017.08.170

 

COST is supported by the EU Framework Programme Horizon 2020

Last update: NOA. 06/06/2019